
presented by:

Judith Smith

Digital Hardware Debug
Techniques

Digital Hardware Debug
Techniques
September 26, 2001

Click to edit Master subtitle style

Page 2

AgendaAgenda

• Digital system development process
• Digital debug methodology overview
• Applying logic analyzers to digital debug
• Measurement challenges

• Finding the cause of a system crash
• Finding the cause of data corruption

• Test equipment considerations

This presentation covers digital hardware debug techniques that save
you time and help you solve critical debug challenges. The majority of the
presentation will cover the solution for the following measurement
challenges:
• Finding the cause of a system crash
• and finding the cause of data corruption

We’ll start off with a quick overview of:
• the digital system development process
• the methodology for digital hardware debug
• and how logic analyzers help you verify system operation and identify
problems

We’ll close with things to consider in your debug tool selection in order
to meet your application and measurement needs.

Click to edit Master subtitle style

Page 3

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Digital System Development ProcessDigital System Development Process

ASIC Design & Development
Sy

st
em

 A
rc

hi
te

ct
ur

e
D

es
ig

n
ASIC
Fab.

System HW Development

ASIC Simulation

B
ui

ld
 P

ro
to

ty
pe

H
W

 T
ur

n-
on

Sy
st

em
In

te
gr

at
io

n

B
et

a
Te

st
 &

 Q
A

Sh
ip

SW Design & Development
SW Simulation In-Target Debug

Developing a digital device can involve many people, tasks, and stages.
From the initial system architecture design to the first shipment of your
product, you have to resolve numerous issues in order to complete your
project on time.

Each stage presents its own unique set of challenges. While many tasks
can be worked in parallel, others occur in serial and are dependent on
other tasks being complete.

Agilent provides tools and measurement assistance in each stage of the
development process. Agilent’s design and debug tools get you to
market faster and easier.

Click to edit Master subtitle style

Page 4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Digital System Development ProcessDigital System Development Process

ASIC Design & Development
Sy

st
em

 A
rc

hi
te

ct
ur

e
D

es
ig

n
ASIC
Fab.

System HW Development

ASIC Simulation

B
ui

ld
 P

ro
to

ty
pe

H
W

 T
ur

n-
on

Sy
st

em
In

te
gr

at
io

n

B
et

a
Te

st
 &

 Q
A

Sh
ip

SW Design & Development
SW Simulation In-Target Debug

There are multiple topics that could be addressed but for today’s
presentation we will focus on solutions to some of the digital hardware
debug challenges you encounter during board turn-on and in-target
debug.

So, we’ve seen an overview of the product development cycle, but what
does the world look like from your view as a digital hardware designer?

Click to edit Master subtitle style

Page 5

Engineer’s DilemmaEngineer’s Dilemma

If you knew what the problem was,
you wouldn’t have to look for it.

How do you capture something
when you don’t know what you’re
looking for?

You are faced with multiple design decisions on a daily basis. You also
encounter system problems that take time to find, let alone resolve. If
you knew what was causing problems in your digital circuit, you wouldn’t
have to look for it. You’d fix it and move on. Your specialty is designing
solutions.

Agilent’s specialty is helping you with tools and techniques to identify
your problems quickly so that you can spend your time designing
solutions.

Click to edit Master subtitle style

Page 6

Digital Debug Methodology OverviewDigital Debug Methodology Overview

Identify
•Describe Problem
•Clarify Symptoms

Isolate
•Find Uniqueness
•Establish Context
•What’s Changed?

•Component Level
•Explain Symptoms

Root-Cause
Analysis

Dependencies
•SW-HW Interactions
•Legacies/Sequences
•Configurations

Verify
•Patch in Fix
•Works in All Cases

Enter Exit

•Bad Fix
•New Problems

Insight Loop

During product development, you need to take advantage of everything
that allows you to hit market windows and beat your competitors to
market. A big part of reducing time to market is reducing the time it takes
to identify, isolate and solve problems that show up during board turn-on
and in-target debug.

The insight loop is an iterative troubleshooting cycle that includes:
1. Identifying the error
2. Isolating and understanding the problem
3. Performing root-cause analysis down to the component level to explain
symptoms.

Getting to root cause is essential in any debug situation and a logic
analyzer is an essential tool because it provides visibility into system
operation. Without it, you run the risk of designing a misguided fix based
on a faulty diagnosis - a mistake that can create even more problems than
it solves.

Click to edit Master subtitle style

Page 7

Why You Need a Logic AnalyzerWhy You Need a Logic Analyzer

• See many signals at once
• Gain insight into digital circuit operation
• View signals same way the hardware does
• Trigger on edges, patterns and complex

sequences of events to capture system
activity

A logic analyzer is an essential tool for digital debug because of its
multiple measurement modes, triggering and data storage capabilities.

You should use a logic analyzer when you need to :
• See many signals at once.
• Look at signals in your system the same way your hardware does.
• Trigger on a pattern of highs and lows on several lines and see the
results.

Click to edit Master subtitle style

Page 8

Measurement ChallengesMeasurement Challenges

Example #1

Finding the Cause of
a System Crash

In the following examples we will review two digital measurement
challenges and how to solve them using a logic analyzer. In each
example we will provide an overview of the solution, as well as go into
each step in depth, providing not only the reasoning for each step but the
way to do it.

The first digital measurement challenge we will cover is finding the cause
of a system crash.

Click to edit Master subtitle style

Page 9

• Only visible symptom
is the crash itself

• Occurs intermittently,
from seconds to days

• There are no live
signals to trigger on

Why Are System Crashes So Difficult?
System CrashSystem Crash

Invariably, every designer encounters a system that has elusive system
crashes. The difficulty in getting to the root cause of a crash is not the
analysis of events leading up to the crash, but rather the ability to even
capture a system crash for analysis. So why is it so difficult to capture a
system crash?

Typically,
• The only visible symptom is the crash itself
• Crashes occur intermittently, anywhere from seconds to days until the
next occurrence
• When a crash occurs there are no live signals available to trigger the
logic analyzer.

Click to edit Master subtitle style

Page 10

• See activity leading up to crash
• Determine how to see activity

• System execution by state (state)
• High level of resolution (timing)

• Select corresponding method for
capturing pre-crash activity

How Do You Find the Problem?
System Crash System Crash

So, what do you need in order to analyze a crash and get to the root
cause of the problem? It’s critical to see the activity leading up to the
crash. The important clues are most likely found there.

It is also important to determine just what type of view you want - either
system execution, event by event, or high resolution timing traces.

Click to edit Master subtitle style

Page 11

1. Define a trigger event that will never occur
2. Position trigger at end of acquisition memory
3. Acquire system activity continuously
4. Stop measurement manually after crash

State Method for Capturing Pre-crash Activity
System Crash - State SolutionSystem Crash - State Solution

If you want to see what the system is executing, use state mode to
capture system activity.

The major steps for capturing pre-crash activity using state mode are:
1. Define a trigger event that will never occur
2. Position the trigger at the end of acquisition memory
3. Acquire system activity continuously
4. Stop the measurement manually after the system crashes

Click to edit Master subtitle style

Page 12

• Why?
• Keep the analyzer acquiring samples

• How?
• Create/select label with a hard-wired bit
• Set trigger to opposite of hard-wired level

1. Define a Trigger Event That Will Never Occur
System Crash - State SolutionSystem Crash - State Solution

Let’s look at each step in greater detail and review not only why the step
is important, but also how to make it happen.

The first step is to define a trigger event that will never occur so that the
logic analyzer will continue to acquire data until manually told to stop.

To do this, create a new label or select an existing label in the logic
analyzer setup menu. Here we show a label called ‘No Trigger’ that
represents the signal connected to Bit 0 of Pod 2. The signal is hard-
wired to ground. In the trigger specification, this new label is used to set
up the trigger event. The trigger event is defined as the occurrence of the
opposite level of the given signal, i.e. high for a TTL signal hard wired to
ground, which will never occur.

Click to edit Master subtitle style

Page 13

• Why?
• See all activity leading up to crash/trigger

• How?
• Use analyzer’s adjustable trigger position

2. Position Trigger at End of Acquisition Memory
System Crash - State Solution System Crash - State Solution

The second step is to position the trigger at the end of acquisition
memory so that you can see all of the activity leading up to the crash.
You can adjust the logic analyzer’s trigger position to be placed
anywhere within the acquisition memory. In this instance, 90% of the
acquisition memory contains the events leading up to the trigger event,
and 10% of the acquisition memory is used to store the events after the
trigger event.

Click to edit Master subtitle style

Page 14

• Why?
• Need pre-crash activity for analysis

• How?
• Analyzer overwrites older data with latest

3. Acquire System Activity Continuously
System Crash - State SolutionSystem Crash - State Solution

Trace Memory
Depth

Stop
Newest Sample

Oldest SampleTrigger Sample

The third step is to start the logic analyzer measurement and continue to
acquire system activity. In state mode, the analyzer uses a signal from
the device under test as the sampling clock. As long as the target is
alive, the analyzer will continue to sample and store system activity into
the logic analyzer’s memory.

The analyzer’s memory can store a given number of samples. Whenever a
new sample is acquired, the oldest sample currently in memory is thrown
away if the memory is full. In this manner, the logic analyzer continues to
store only the most recent activity.

Click to edit Master subtitle style

Page 15

• Why?
• To see what has been

stored to memory
• How?

• Press the instrument’s
Stop key

4. Stop Measurement Manually after Crash
System Crash - State SolutionSystem Crash - State Solution

The final step is to manually stop the measurement once you see the
system crash. When a crash occurs, the signals used to sample data into
logic analyzer memory go away, therefore no additional samples are
acquired or stored by the logic analyzer. Pressing the logic analyzer’s
Stop key creates an artificial trigger. The logic analyzer has the most
recent activity prior to the crash stored in memory.

You now have the critical data needed to determine the cause of the
crash.

Click to edit Master subtitle style

Page 16

• Creating an artificial trigger
• Set up a label for a signal hard-

wired to ground
• Specify trigger event as opposite

value of the new label
• Remember signal used for

analyzer’s state clock stops when
system crashes

• Stop the measurement manually

Technique Learned
System Crash - State SolutionSystem Crash - State Solution

From this example you’ve learned how to create an artificial trigger:
• Set up a label for a signal that is hard-wired to ground
• Specify the trigger event as the opposite value of the new label
• Remember signal used for analyzer’s state clock stops when system
crashes
• Stop the measurement manually

Click to edit Master subtitle style

Page 17

1. Find a periodic/consistent signal in the system
2. Determine maximum time interval for signal
3. Position trigger at end of acquisition memory
4. Set trigger to occur if time interval is exceeded

System Crash - Timing SolutionSystem Crash - Timing Solution
Timing Method for Capturing Pre-crash Activity

If you want to see system timing information with high resolution, use
timing mode to capture system activity.

The major steps for capturing pre-crash activity using timing mode are:
1. Find a periodic or consistent signal in the system
2. Determine the the maximum time interval for the signal
3. Position the trigger at the end of acquisition memory
4. Set the trigger to occur if the time interval is exceeded

Click to edit Master subtitle style

Page 18

• Why?
• Absence of predictable signal is trigger

• How?
• Use predictable signal like address strobe

1. Find a Periodic/Consistent Signal in System
System Crash - Timing SolutionSystem Crash - Timing Solution

The first step is to find a signal in the system that is periodic or
consistent - like an address strobe or a periodic interrupt. The absence
of this signal indicates that the system has crashed.

Click to edit Master subtitle style

Page 19

• Why?
• Need interval value to specify trigger

• How?
• Use analyzer marker measurement

2. Determine Time Interval for Signal
System Crash - Timing SolutionSystem Crash - Timing Solution

Next, determine the maximum time interval for the chosen signal. The
easiest way is to take a logic analyzer trace and use the markers do
measure the time interval for the signal.

Click to edit Master subtitle style

Page 20

• Why?
• See all activity leading up to crash/trigger

• How?
• Use analyzer’s adjustable trigger position

3. Position Trigger at End of Acquisition Memory
System Crash - Timing SolutionSystem Crash - Timing Solution

Next, position the trigger at the end of acquisition memory so that you
can see all of the activity leading up to the crash. Remember, you can
adjust the logic analyzer’s trigger position to be placed anywhere within
the acquisition memory. In this instance, 90% of the acquisition memory
contains the events leading up to the trigger event, and 10% of the
acquisition memory is used to store the events after the trigger event.

Click to edit Master subtitle style

Page 21

• Why?
• Exceeding

interval means
signal is gone

• How?
• Use analyzer’s

trigger function

4. Set Trigger to Occur If Time Interval Exceeded
System Crash - Timing SolutionSystem Crash - Timing Solution

Finally, set the logic analyzer to trigger if the measured time interval is
exceeded. If the time interval is exceeded, the system has crashed.

Click to edit Master subtitle style

Page 22

• Use the absence of a periodic
signal as the trigger event for
a system crash

Technique Learned
System Crash - Timing SolutionSystem Crash - Timing Solution

From this example you’ve learned how to use the absence of a periodic
signal as the trigger event for a system crash.

Click to edit Master subtitle style

Page 23

• Review trace for clues
• Use clues to:

• Determine the cause from
the existing trace

• Decide what needs to be
acquired next

Taking the Crash to Root CauseTaking the Crash to Root Cause

Typically, the difficulty in getting to the root cause of a crash is not the
analysis of events leading up to the crash, but rather the ability to even
capture a system crash for analysis. Once you’ve captured the events
leading up to the crash, you have information that will lead you to the
cause of the crash.

Review the trace for clues. In many cases the trace you’ve captured will
provide a good indication of the cause of the crash. If not, the clues will
help you decide what needs to be acquired next to give you the
necessary information.

Click to edit Master subtitle style

Page 24

Q & A

Click to edit Master subtitle style

Page 25

Measurement ChallengesMeasurement Challenges

Example #2

Finding the Cause of Data Corruption

Tracking Symptom to Root Cause

The second digital measurement challenge we will cover is finding the
cause of data corruption. In each example we will provide an overview of
the solution, as well as go into each step in depth, providing not only the
reasoning for each step but the way to do it.

Click to edit Master subtitle style

Page 26

• Symptom may be totally unrelated
to cause

• Cause could be software,
hardware or interaction of the two

• Wide variety of causes may
require cross-domain analysis

Why Is Data Corruption So Difficult?
Data Corruption Data Corruption

In a digital system, sometimes the symptom of a problem may be totally
unrelated to the cause. The cause for a symptom may be software,
hardware or the interaction of the two. The symptom may be more easily
found using one measurement domain while the cause of a problem is
best captured in a different measurement domain.

Cross-domain measurements let you combine the logic analyzer’s
different measurement capabilities to solve hard-to-find problems in your
digital system.

Click to edit Master subtitle style

Page 27

• State
• Synchronous sampling

• Timing
• Asynchronous sampling

• Oscilloscope
• Voltage resolution and

parametric measurements

Measurement Modes
Data Corruption Data Corruption

State analysis contributes synchronous acquisition and software analysis
capability.

Timing analysis adds high-resolution asynchronous acquisition and
control, as well as bus signal analysis capability.

Analog (oscilloscope) analysis provides voltage resolution and
parametric analysis measurements.

Click to edit Master subtitle style

Page 28

• Identify the symptom
• Capture activity related to the symptom
• Use multiple measurement modes to

uncover the root cause

How Do You Find the Problem?
Data Corruption Data Corruption

So how to you find the cause of data corruption?

1. Use the symptom of the problem as the main triggering event.
2. Isolate the area that is causing a symptom.
3. Use all measurement domains possible to identify the root cause.

Click to edit Master subtitle style

Page 29

• D/A output should be
triangular waveform

• Scope shows distortion
in waveform

• Distortion varies over
time

Identify the Symptom

Data Corruption - Incorrect D/A OutputData Corruption - Incorrect D/A Output

Our first data corruption example is a D/A that is generating an incorrect
waveform. The target is supposed to produce a triangular waveform
output signal. When looking at the D/A output with an oscilloscope you
see a distortion in the expected triangular waveform. By running the
scope repetitively you see that the distortion also varies over time.

Click to edit Master subtitle style

Page 30

1. Use scope trigger to arm logic analyzer
2. Analyze activity when waveform generated
3. Verify expected cause

Method for Determining D/A Output Corruption

Data Corruption - Incorrect D/A OutputData Corruption - Incorrect D/A Output

The major steps for determining the cause of the D/A output corruption
are:

1. Use scope trigger to arm logic analyzer
2. Analyze activity when waveform generated
3. Verify expected cause

Click to edit Master subtitle style

Page 31

• Why?
• Correlate measurement activity

• How?
• Arm logic analyzer when scope triggers

1. Use Scope Trigger to Arm Logic Analyzer
Data Corruption - Incorrect D/A OutputData Corruption - Incorrect D/A Output

To correlate measurement activity, arm the logic analyzer to trigger when
the oscilloscope triggers. This allows you to determine the relationship
between different parts of the system at the same moment in time.

Click to edit Master subtitle style

Page 32

• Why?
• See what else happens at the same time

• How?
• Acquire processor activity when generating

waveform

2. Analyze Activity When Waveform Generated
Data Corruption - Incorrect D/A OutputData Corruption - Incorrect D/A Output

It is important to see what else is happening in the system when the
waveform distortion occurs. The logic analyzer is used to acquire
processor activity when the D/A output distortion occurs.

By examining the processor mnemonics we learn that the defects in the
waveform occur when interrupt service routines execute during the
generation of the waveform.

Click to edit Master subtitle style

Page 33

• Why?
• Ensure you get to

root cause
• How?

• Enable/disable
interrupt

3. Verify Expected Cause

Data Corruption - Incorrect D/A OutputData Corruption - Incorrect D/A Output

To fully verify that the interrupt service routines are the culprit, you can
use an emulation probe to enable and disable the suspect interrupt line.
When turned on, it causes the D/A output distortion. When turned off, the
D/A produces the correct triangular waveform output.

Click to edit Master subtitle style

Page 34

• System writes test pattern to
display

• Incorrect character
intermittently written to display

Identify the Symptom
Data Corruption - Display ErrorData Corruption - Display Error

Let’s look at another example of data corruption and the use of cross
domain analysis to determine the cause. In this example the system
writes a test pattern of block characters to the display. Intermittently, an
incorrect character is written to the display.

Click to edit Master subtitle style

Page 35

1. Capture writes to display (state mode)
2. Review timing relationships (timing mode)
3. Examine signal characteristics (scope)

Method for Determining Cause of Display Error

Data Corruption - Display ErrorData Corruption - Display Error

The major steps for determining the cause of the display error are:

1. Capture writes to the display using state mode
2. Review timing relationships using timing mode
3. Examine the signal characteristics using a scope

Click to edit Master subtitle style

Page 36

• Why?
• To capture activity surrounding error

• How?
• Set trigger for write of non-block character

1. Capture Writes to Display (State Mode)

Data Corruption - Display ErrorData Corruption - Display Error

Glitch Detected
}

The state analyzer is an excellent tool for monitoring accesses to a
memory location. You can set up the analyzer to capture all reads and
writes to a specific address and trigger if an unexpected value occurs.
After tracing all accesses to the problem address, you can quickly
determine if any unexpected values were written by examining the state
listing.

In this example, the logic analyzer is set to trigger when a non-block
character is written to the display. Block characters were being sent to
the display before the error occurred.

If the software had been writing the incorrect value, you could examine
the state listing to see which part of the program was executing at that
time. If only correct values are written, the problem might be in the
hardware.

Click to edit Master subtitle style

Page 37

• Why?
• Uncover hardware timing problems

• How?
• Trigger on write error, examine relationships

2. Review Timing Relationships (Timing Mode)

Data Corruption - Display ErrorData Corruption - Display Error

Data_1

Signal_1

Glitch

Looking at the same reads and writes with the timing analyzer gives you
more insight as to the possible cause of the problem. Looking at the
timing relationships between the address, data, and control lines, you
can uncover hardware problems such as timing violations, race
conditions, or improper control sequences.

Occasionally, looking at signals with the timing analyzer does not
uncover the cause of the problem. If you have an overdrive problem, the
timing analyzer might not detect it. Perhaps you do see that one of the
data bits is low when it should be high, or that a control signal has a
glitch. But you still don’t know the cause of the problem. To understand
the cause of these parametric types of problems, you can use a scope to
look at the analog domain.

In this case, every time we see a glitch on Data_1, Signal_1 is
transitioning from high to low.

Click to edit Master subtitle style

Page 38

• Why?
• To understand parametric problems

• How?
• Arm the scope from the timing analyzer

3. Examine Signal Characteristics (Scope)

Data Corruption - Display ErrorData Corruption - Display Error

Analyzing the analog properties of your digital signals helps you uncover
problems such as inadequate voltage swings, cross-talk, and ground
bounce.

When the non-block character occurs, the offending signal is being
pulled from a high to low when another signal goes from high to low.
Cross domain measurement techniques identify energy being cross-
coupled between two traces that are routed too closely together.

Click to edit Master subtitle style

Page 39

• Cross-domain analysis methodology
• Use the symptom of the problem as

the main triggering event
• Use other measurement domains to

isolate area causing the symptom
• Use additional measurement

domains to identify root cause

Technique Learned
Data Corruption Data Corruption

From these two examples you’ve learned how to use cross domain
analysis to get to the root cause of the problem.

• Use the symptom of the problem as the main triggering event
• Use other measurement domains to isolate the area causing the
symptom
• Use additional measurement domains to identify root cause

Click to edit Master subtitle style

Page 40

• State analysis - to show how it happened
• Timing analysis - to show when it happened
• Oscilloscope - to show why it happened

Use of Multiple Measurement Modes

Data Corruption - Write to DisplayData Corruption - Write to Display

Capturing complex failures often requires state analysis to show how it
happened, timing analysis to show when it happened and oscilloscope
analysis to show why it happened.

Click to edit Master subtitle style

Page 41

• What measurements are you trying to make?
• How many signals will you be analyzing?
• How much memory do you need?
• What speed requirements do you have?
• Have you planned how to probe your system?
• What processors and buses are you using?
• Do you need to control the processor?

Test Equipment ConsiderationsTest Equipment Considerations

To determine your test equipment needs, consider the following with
regard to your target and application:

• What measurements are you trying to make?
• How many signals will you be analyzing?
• How much memory do you need?
• What speed requirements do you have?
• Have you planned how to probe your system?
• What processors and buses are you using?
• Do you need to control the processor?

Click to edit Master subtitle style

Page 42

Conclusion

Q & A

We hope this presentation has helped you gain a better understanding of
digital hardware debug techniques.

